Graphalgorithmen

Johannes Köbler

Institut für Informatik Humboldt-Universität zu Berlin

WS 2023/24

Definition Sei G = (V, E) ein Graph und sei $M \subseteq E$.

- M heißt Matching in G, falls je zwei Kanten $e \neq e' \in M$ unabhängig sind, d.h. $e \cap e' = \emptyset$
- Die Matchingzahl von G ist

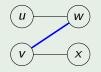
$$\mu(G) = \max\{|M| : M \text{ ist ein Matching in } G\}$$

- Ein Knoten $v \in V$ heißt M-gebunden, falls v Endpunkt einer Kante $e \in M$ (also $v \in \bigcup M$) ist und sonst M-frei
- Wir sagen auch, M bindet v bzw. M lässt v frei
- Ein Matching M heißt perfekt, falls alle Knoten in G M-gebunden sind (also $V = \bigcup M$ ist)
- ullet Ein Matching M heißt maximal (engl. maximum), falls $|M|=\mu(G)$ ist
- M heißt gesättigt (engl. maximal), falls es in keinem größeren Matching enthalten ist

Offenbar ist M genau dann ein Matching, wenn $|\bigcup M| = 2|M|$ ist

Das Ziel besteht nun darin, ein maximales Matching M in G zu finden

Beispiel Ein gesättigtes Matching muss nicht maximal sein:



- $M = \{\{v, w\}\}$ ist gesättigt, da es sich nicht erweitern lässt
- M ist jedoch kein maximales Matching, da $M' = \{\{u, w\}, \{v, x\}\}$ ein größeres Matching ist
- Die Greedy-Methode, ausgehend von $M = \emptyset$ solange Kanten zu M hinzuzufügen, bis M gesättigt ist, funktioniert also nicht
- ullet Wir setzen im Folgenden voraus, dass G keine isolierte Knoten enthält

Matchings

Satz

In einem bipartiten Graphen G = (U, W, E) lässt sich ein maximales Matching in Zeit $O(m\sqrt{n})$ bestimmen

Beweis

- Wir konstruieren zu G das Netzwerk N = (V, E', s, t, c) mit der Knotenmenge $V = U \cup W \cup \{s, t\}$ und der Kantenmenge
 - $E' = \{(u, w) \in U \times W \mid \{u, w\} \in E\} \cup \{(s, u), (w, t) \mid u \in U, w \in W\}$
 - wobei c(e)=1 für alle $e\in E'$ gilt
- Da in N alle Knoten $u \in U \cup W$ den Durchsatz $D(u) \leq C = 1$ haben, liefert jeder Fluss f in N ein Matching $M = \{\{u, w\} \in E \mid f(u, w) = 1\}$ in G mit |M| = |f| und umgekehrt
- Daher berechnet Dinitz unter Verwendung von blockfluss1 in Zeit $O((nC+m)\sqrt{nC}) = O(m\sqrt{n})$ einen maximalen Fluss in N (und somit ein maximales Matching in G)

- In den Übungen werden wir sehen, dass sich die Laufzeit durch eine verbesserte Analyse sogar durch $O(m\sqrt{\mu})$ begrenzen lässt
- Die Konstruktion im Beweis des vorigen Satzes lässt sich nicht ohne Weiteres auf beliebige Graphen verallgemeinern
- Wir werden jedoch sehen, dass sich manche bei den Flussalgorithmen verwendete Ideen auch für Matchingalgorithmen einsetzen lassen
- So lassen sich Matchings, die nicht maximal sind, ähnlich vergrößern wie dies bei Flüssen durch einen Zunahmepfad möglich ist

Definition Sei G = (V, E) ein Graph und sei M ein Matching in G.

• Ein Pfad $P = (u_0, \ldots, u_l)$ in G der Länge $\ell \geq 1$ heißt M-alternierend, falls für $i = 1, \ldots, \ell - 1$ gilt:

$$e_i = \{u_{i-1}, u_i\} \in M \iff e_{i+1} = \{u_i, u_{i+1}\} \not\in M$$

• Ein Kreis $C=(u_1,\ldots,u_\ell,u_1)$ in G heißt M-alternierend, falls der Pfad $P=(u_1,\ldots,u_\ell)$ M-alternierend ist und zudem gilt:

$$\{u_1,u_2\}\in M\iff \{u_1,u_\ell\}\not\in M$$

• Ein M-alternierender Pfad $P=(u_0,\ldots,u_\ell)$ heißt M-vergrößernder Pfad (oder einfach M-Pfad), falls beide Endpunkte von P M-frei sind

Im bipartiten Fall entsprechen sich M-Pfade und Zunahmepfade

Satz (Lemma von Berge)

Ein Matching M ist genau dann maximal, wenn es keinen M-Pfad gibt

Beweis

- Ist $P = (u_0, \ldots, u_l)$ ein M-Pfad, so liefert $M' = M\Delta P$ ein Matching der Größe |M'| = |M| + 1 in G, wobei wir P als Menge $\{\{u_{i-1}, u_i\} \mid i = 1, \ldots, l\}$ seiner Kanten auffassen
- Ist dagegen M nicht maximal und M' ein größeres Matching, so betrachten wir die Kantenmenge $M\Delta M'$
- Da jeder Knoten in dem Graphen $G' = (V, M\Delta M')$ höchstens den Grad 2 hat, lässt sich G' in disjunkte Kreise und Pfade zerlegen
- Da diese Kreise und Pfade sowohl M- als auch M'-alternierend sind, und M' größer als M ist, muss mindestens einer der Pfade mehr Kanten aus M' als aus M enthalten und somit ein M-Pfad sein

Es genügt also, einen M-Pfad zu finden (sofern er existiert)

- Sei G ein Graph ohne isolierte Knoten und sei M ein Matching in G
- Die Prozedur FindePfad gibt einen M-Pfad in G zurück, falls das aktuelle Matching M nicht bereits maximal ist
- Da M nicht mehr als $\lfloor n/2 \rfloor$ Kanten enthalten kann, muss die Prozedur FindePfad ausgehend von $M = \emptyset$ höchstens $\lfloor n/2 + 1 \rfloor$ -mal aufgerufen werden, um ein maximales Matching zu finden

```
Prozedur FindePfad(V, E, M)
  Q := \emptyset
  for all u \in V do
     parent(u) := \bot
     if \exists e \in M : u \in e then
       zustand(u) := 2 // unerreicht
     else
       zustand(u) := 0 // gerade
       root(u) := u
8
       Q := Q \cup \{(u, v) \mid \{u, v\} \in E\}
```

Prozedur FindePfad(V, E, M) (Fortsetzung)

return \perp

```
while Q \neq \emptyset do
      entferne eine Kante (u, v) aus Q
12
      if zustand(v) = 2 then // Erweiterung von W gefunden
13
        parent(v) := u; parent(M(v)) := v; zustand(v) := 1 // ungerade
14
        \operatorname{zustand}(M(v)) := 0; \operatorname{root}(M(v)) := \operatorname{root}(v) := \operatorname{root}(u)
15
        Q := Q \cup \{(M(v), w) \mid \{M(v), w\} \in E \setminus M\}
16
      if zustand(v) = 0 then
17
         if root(u) = root(v) then // Blüte gefunden
18
           kontrahiere in W die Blüte C zu ihrer Basis b und speichere
19
           den Kreis C unter der Basis b ab
20
           füge zu Q für jede Kante \{c, a\} \in E mit c \in C ungerade und
21
           a \notin C die Kante (b, a) hinzu
22
        else // M-Pfad gefunden
23
           setze die parent-Pfade P_u und P_v von u und v mit Hilfe
24
           der Kante \{u, v\} zu einem r_u-r_v-Pfad P' zusammen
25
           und expandiere P' zu einem M-Pfad P in G; return P
26
```

- Die Prozedur FindePfad sucht wie folgt nach einem M-Pfad in G
- Jeder Knoten *u* hat einen von 3 Zuständen:
 - gerade (0)
 - ungerade (1)
 - oder unerreicht (2)
- Zu Beginn sind alle M-freien Knoten gerade und alle M-gebundenen Knoten unerreicht
- Dann wird ausgehend von den M-freien Knoten als Wurzeln ein Suchwald W für G aufgebaut
- Hierzu wird Q als Menge aller Kanten (u, v) initialisiert, so dass u gerade (also eine Wurzel) und $\{u, v\} \in E$ ist
- In der while-Schleife werden dann die zu Q hinzugefügten Kanten e=(u,v) abgearbeitet, wobei Kanten zu einem ungeraden Knoten v ignoriert werden

- Ist v unerreicht, so wird der aktuelle Suchwald W nicht nur um die Kante e = (u, v), sondern auch um die Matching-Kante (v, M(v)) erweitert, wobei M(v) der Matchingpartner von v ist
- Hierzu werden parent(v) auf u und parent(M(v)) auf v gesetzt
- Zudem wechselt der Zustand von v von unerreicht zu ungerade und der von M(v) von unerreicht zu gerade
- Somit erhält jeder erreichte Knoten u genau dann den Zustand gerade, wenn u in W einen geraden Abstand zu seiner Wurzel r_u hat
- Die entsprechenden Wurzelpfade P_u von r_u zu u lassen sich mithilfe der parent-Funktion berechnen
- Für die Suche nach alternierenden Fortsetzungen des Wurzelpfads $P_{M(v)}$ werden zu Q noch alle Kanten (M(v), w) mit $\{M(v), w\} \in E$ und $w \neq v$ hinzugefügt

- Ist v dagegen wie u gerade, so gibt es zwei Unterfälle
- Haben u und v verschiedene Wurzeln $r_u \neq r_v$, so lassen sich die beiden Wurzelpfade P_u und P_v mit Hilfe der Kante $\{u,v\}$ zu einem Pfad P' zusammensetzen, der die beiden M-freien Wurzeln r_u und r_v verbindet
- Da vor dem Auffinden von P' möglicherweise Blüten kontrahiert wurden (siehe unten), muss P' evtl. noch expandiert werden, um einen M-Pfad P in G zu erhalten

- Im Fall $r_u = r_v$ haben die P_u und P_v dieselbe Wurzel $r = r_u = r_v$, d.h. u und v befinden sich im gleichen Suchbaum von W
- Sei b der Knoten, der sowohl auf P_u als auch auf P_v liegt und unterschiedliche Nachfolger in P_u und P_v hat
- Da b in W (mindestens) 2 Kinder hat und ungerade Knoten in W nur ein Kind haben, muss b gerade sein, und da u und v ebenfalls gerade sind, haben sie in W einen geraden Abstand zu b
- Daher bilden der b-u-Teilpfad von P_u und der b-v-Teilpfad von P_v zusammen mit der Kante $\{u,v\}$ einen ungerichteten Kreis C ungerader Länge, der als Blüte mit der Basis b bezeichnet wird
- Da nun auch die ungeraden Knoten auf C über einen alternierenden Pfad gerader Länge von r über die Basis b und die Kante $\{u, v\}$ erreichbar sind, werden alle Knoten auf C zu geraden Knoten
- Daher wird C in W zu ihrer Basis b kontrahiert und für jede Kante $\{c,a\}$ in E mit $c\in C$ ungerade wird die Kante (b,a) zu Q hinzugefügt

- Zwar führt die Entdeckung einer Blüte C nicht unmittelbar zu einem M-Pfad
- ullet Sie dehnt aber die Suche nach $M ext{-Pfaden}$ auf alle ungeraden Knoten in C aus
- Kontrahieren wir in G die Blüte C zur Basis b, so erbt b in dem kontrahierten Graphen G_C die Nachbarschaften aller Knoten in C zu den Knoten außerhalb von C
- Entfernen wir aus einem Matching M von G alle Kanten, die auf dem Kreis C liegen, so erhalten wir ein Matching M_C in G_C
- Das folgende Lemma zeigt, wie sich ein M_C -Pfad in G_C zu einem M-Pfad in G expandieren lässt

Lemma Sei C eine Blüte in G mit Basis b.

Dann ist jeder M_C -Pfad P_C in G_C zu einem M-Pfad P in G expandierbar

Beweis

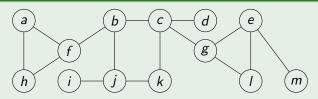
- Falls P_C nicht schon selbst ein M-Pfad in G ist, muss P_C eine Kante e enthalten, die in G fehlt
- Da durch die Kontraktion von C zu b in G_C nur solche Kanten neu entstehen, die die Basis b mit einem Knoten a außerhalb der Blüte C verbinden, muss e die Form $e = \{a, b\}$ haben
- Zudem muss a in G einen Nachbarn $c \neq b$ auf der Blüte C haben

Beweis (Fortsetzung)

- Falls P_C nicht schon selbst ein M-Pfad in G ist, muss P_C eine Kante e enthalten, die in G fehlt
- Da durch die Kontraktion von C zu b in G_C nur solche Kanten neu entstehen, die die Basis b mit einem Knoten a außerhalb der Blüte C verbinden, muss e die Form $e = \{a, b\}$ haben
- ullet Zudem muss a in G einen Nachbarn $c \neq b$ auf der Blüte C haben
- Von c aus führen auf dem Kreis C genau zwei Pfade zur Basis b, wovon nur einer den Knoten c über eine Matchingkante verlässt (also gerade Länge hat)
- Indem wir diesem Pfad die Kante $\{a,c\}$ hinzufügen, erhalten wir einen M-alternierenden a-b-Pfad P_e in G
- Wir können also P_C zu einem M-Pfad P in G expandieren, indem wir die Kante $e = \{a, b\}$ durch den a-b-Pfad P_e ersetzen

- ullet Da sich die Anzahl der Knoten bei jeder Kontraktion einer Blüte mindestens um 2 verringert, können höchstens n/2 Blüten gefunden werden
- Bei Verwendung geeigneter Datenstrukturen zur Verwaltung der Blüten lässt sich die Prozedur FindePfad in Zeit O(m) implementieren, was auf eine Gesamtlaufzeit von O(nm) für den Algorithmus von Edmonds führt
- Tatsächlich lässt sich die Laufzeit noch auf $O(m\sqrt{\mu})$ verringern
- Dazu berechnet man ähnlich wie bei Verwendung von Dinitz im bipartiten Fall pro Runde nicht nur einen M-Pfad, sondern in Zeit O(m) eine maximale Menge knotendisjunkter M-Pfade, die alle eine minimale Länge haben
- ullet Dann kann man wieder zeigen, dass $O(\sqrt{\mu})$ solcher Runden ausreichen, um ein maximales Matching zu finden
- Diese Strategie führt auf den Hopcroft-Karp-Algorithmus im bipartiten Fall und auf den Micali-Vazirani-Algorithmus für beliebige Graphen

Beispiel Wir betrachten den Graphen



i	abgearbeitet	B _i	bi	abgearbeitet	Pi	M _i
1	af	-	-	-	af	{af}
2	bc	-	-	-	bc	$\{af,bc\}$
3	dc, bf, ah	-	-	-	dcbfah	$\{ah, bf, cd\}$
4	eg	-	-	-	eg	$\{ah, bf, cd, eg\}$
5	ij	-	-	-	ij	$\{ah, bf, cd, eg, ij\}$
6	kc, kj, le, gl	lge	1	ml	megl	$\{ah, bf, cd, ij, em, gl\}$
7	kc, kj	-	-	-	-	$\{ah, bf, cd, ij, em, gl\}$

- Für den Beweis der Korrektheit des Edmonds-Algorithmus (genauer: zum Nachweis der Maximalität des berechneten Matchings) benötigen wir den Begriff der Odd Set Cover in einem Graphen *G*
- ullet Sei M ein Matching und sei C eine Knotenüberdeckung (kurz VC für vertex cover) in G
- Da jede Kante e in M mindestens einen Endpunkt in C hat, aber keine Kanten in M einen gemeinsamen Endpunkt haben, folgt $|M| \leq |C|$
- Wir werden sehen, dass es in jedem bipartiten Graphen sogar ein Matching M und eine Knotenüberdeckung C mit |M| = |C| gibt
- Die Angabe einer Knotenüberdeckung C mit |C| = |M| bietet also eine einfache Möglichkeit, die Maximalität von M nachzuweisen
- ullet Dies geht jedoch nicht in allen Graphen, da z.B. der K_4 nur Matchings der Größe \leq 2, aber keine Knotenüberdeckung der Größe 2 hat

Definition Sei G = (V, E) ein Graph.

- Eine Menge $S = \{v_1, \dots, v_k, V_1, \dots, V_\ell\}$ von Knoten $v_1, \dots, v_k \in V$ und Teilmengen $V_1, \dots, V_\ell \subseteq V$ heißt Odd Set Cover (OSC) in G, falls
 - es für jede Kante $e \in E$ einen Knoten $v_i \in S$ mit $v_i \in e$ oder eine Menge $V_j \in S$ mit $e \subseteq V_j$ gibt und
 - ullet alle Mengen $V_j \in S$ eine ungerade Größe $n_j = |V_j|$ haben
- Das Gewicht von S ist $w(S) = k + \sum_{j=1}^{\ell} (n_j 1)/2$

Im Fall $\ell=0$ ist $S=\{v_1,\ldots,v_k\}$ also eine Knotenüberdeckung oder vertex cover (VC) in G

Beispiel

- Der $K_{i,j}$, $i \leq j$, hat die Matchingzahl $\mu(K_{i,j}) = i$ und eine kleinste VC ist $C = \{1, \ldots, i\}$, die auch eine OSC vom Gewicht w(C) = i ist
- Der K_n hat die Matchingzahl $\mu(K_n) = \lfloor n/2 \rfloor$ und eine kleinste VC ist $C = \{1, \ldots, n-1\}$, während $S = \{1, \{2, \ldots, n\}\}$ für gerades n und $S = \{V(K_n)\}$ für ungerades n eine OSC vom Gewicht $w(S) = \lfloor n/2 \rfloor$ ist, wobei V(G) die Knotenmenge eines Graphen G bezeichnet
- Der C_n hat die Matchingzahl $\mu(C_n) = \lfloor n/2 \rfloor$ und eine kleinste VC ist $C = \{1, 3, 5, \ldots, n-1\}$ für gerades n und $C = \{1, 3, 5, \ldots, n-1, n\}$ für ungerades n, während $S = \{1, 3, 5, \ldots, n-1\}$ für gerades n und $S = \{V(C_n)\}$ für ungerades n eine OSC vom Gewicht $w(S) = \mu(C_n)$ ist

Beispiel (Fortsetzung)

- Der vollständige Splitgraph $S_{i,j} = K_i + E_j$ hat im Fall $1 \le i \le j$ die Matchingzahl $\mu(S_{i,j}) = i$ und eine kleinste VC ist $C = \{1, \ldots, i\}$, die auch eine OSC vom Gewicht w(C) = i ist
- Dagegen hat $S_{i,j}$ im Fall $i > j \ge 1$ die Matchingzahl $\mu(S_{i,j}) = \lfloor n/2 \rfloor$ und eine kleinste VC ist $C = \{1, \ldots, i\}$, während $S = \{V(S_{i,j})\}$ für ungerades n und $S = \{1, \{2, 3, \ldots, n\}\}$ für gerades n eine OSC mit $w(S) = 1 + \lfloor (n-1)/2 \rfloor = 1 + (n-2)/2 = n/2 = \mu(S_{i,j})$ ist

Lemma

Für jedes Matching M in einem Graphen G = (V, E) und jede OSC $S = \{v_1, \dots, v_k, V_1, \dots, V_\ell\}$ in G gilt $|M| \leq w(S)$

Beweis

M kann für jeden Knoten $v_i \in S$ höchstens eine Kante e mit $v_i \in e$ und für jede Menge $V_j \in S$ höchstens $(n_j - 1)/2$ Kanten $e \subseteq V_j$ enthalten

Satz Sei M ein Matching in G.

Falls FindePfad(G, M) keinen M-Pfad findet, ist M maximal

Beweis

- Wir benutzen die Klassifikation der Knoten von G zum Zeitpunkt des Abbruchs der erfolglosen Suche nach einem M-Pfad, um eine OSC S für G mit w(S) = |M| zu finden
- ullet Sei V_0 die Menge der geraden, V_1 die der ungeraden Knoten in W und V_2 die der unerreichten Knoten in G zu diesem Zeitpunkt
- Weiter seien b_1, \ldots, b_ℓ die Knoten in V_0 , zu denen die gefundenen Blüten kontrahiert wurden, und für $j=1,\ldots,\ell$ sei $C_j\subseteq V$ die Menge aller Knoten, die zu b_j kontrahiert wurden (d.h. von den Knoten in C_j ist nur noch b_j in $V_0\cup V_1\cup V_2$ vorhanden)
- Es ist klar, dass die Größe $n_j = |C_j|$ von C_j ungerade ist, da C_j durch eine Folge von Kontraktionen auf b_j verkleinert wird und dabei jedesmal gerade viele Knoten aus C_i entfernt werden

Beweis (Fortsetzung)

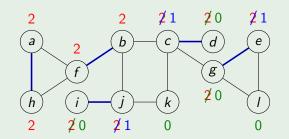
- Zudem sei $V_0' = V_0 \cup C_1 \cup \cdots \cup C_\ell = V \setminus (V_1 \cup V_2)$ die Menge aller geraden und zu einem geraden Knoten kontrahierten Knoten in G
- geraden und zu einem geraden Knoten kontrahierten Knoten in G• Dann kann es in G keine Kante $\{u, v\}$ zwischen V_0' und V_2 geben
- ullet Sonst hätte nämlich FindePfad eine Kante (u',v) mit $u'\in V_0'$ zu Q hinzugefügt und somit wäre v beim Abarbeiten dieser Kante ungerade geworden
- ullet Zudem muss jede Kante $\{u,v\}$ in G mit $u,v\in V_0'$ in einer Menge C_j liegen
- Sonst wäre nämlich zu Q eine Kante (u',v') mit $\{u',v'\}\subseteq V'_0$ und $\{u',v'\}\not\subseteq C_j$ für $j=1,\ldots,I$ hinzugefügt worden, deren Abarbeitung entweder zu einer weiteren Blüte oder zu einem M-Pfad geführt hätte
- Folglich muss jede Kante $e \in E$ entweder
 - einen ungeraden Endpunkt haben (d.h. $e \cap V_1 \neq \emptyset$) oder
 - komplett in einer Menge C_i liegen (d.h. $\exists j : e \subseteq C_i$) oder
 - zwei unerreichte Knoten verbinden (d.h. $e \subseteq V_2$)

Beweis (Schluss)

- Nun können wir die Menge $S = \{u_1, \dots, u_k, C_1, \dots, C_\ell\}$, wobei $S_1 = \{u_1, \dots, u_k\}$ ist, wie folgt zu einer OSC erweitern:
 - Ist $|V_2|>0$, so fügen wir einen beliebigen Knoten $u_0\in V_2$ als Einzelknoten zu S hinzu
 - ullet Ist $|V_2|>$ 2, so fügen wir zu S noch die Menge $C_0=V_2\setminus\{u_0\}$ hinzu
- Da alle Knoten in V_2 durch eine Matchingkante $e \subseteq V_2$ gebunden sind, ist $|V_2|$ gerade, und somit ist $n_0 = |C_0| = |V_2| 1 \ge 3$ und ungerade
- Dann ist S eine OSC für G, da jede Kante $e \in E$ entweder einen Endpunkt in S hat oder von einer der Mengen $C_j \in S$ überdeckt wird
- Zudem gilt w(S) = |M| da sich M in |S| Mengen
 - $M_i = \{e \in M \mid u_i \in e\}$ der Größe $|M_i| = 1$ und
 - $M_j' = \{e \in M \mid e \subseteq C_j\}$ der Größen $|M_j'| = (n_j 1)/2$

zerlegen lässt

Beispiel



- In obigem Graphen G mit dem Matching $M = \{ah, bf, cd, eg, ij\}$ arbeitet FindePfad zunächst die Kanten kc, kj und le ab
- Anschließend wird beim Abarbeiten der Kante gl die Blüte $B_1 = lge$ gefunden und zu ihrer Basis $b_1 = l$ kontrahiert
- Nun bricht FindePfad die Suche nach einem M-Pfad erfolglos ab und wir erhalten wegen $V_0 = \{d, i, k, l\}$, $V_1 = \{c, j\}$, $V_2 = \{a, b, f, h\}$ und $C_1 = \{e, g, l\}$ die OSC $S = \{a, c, j, \{b, f, h\}, \{e, g, l\}\}$ in G

Der Algorithmus von Edmonds lässt sich leicht so erweitern, dass er in Zeit O(nm) neben dem berechneten Matching M eine OSC S mit w(S) = |M| ausgibt, um die Maximalität von M nachzuweisen

Korollar

• Für jeden Graphen G gilt

$$\mu(G) = \min\{w(S) : S \text{ ist eine OSC in } G\}$$

• Für bipartite Graphen G gilt (Satz von König)

$$\mu(\mathit{G}) = \min\{|\mathit{C}| : \mathit{C} \text{ ist eine Knotenüberdeckung in } \mathit{G}\}$$

• Im bipartiten Fall lässt sich eine (kleinste) Knotenüberdeckung C der Größe $|C| = \mu(G)$ in Zeit $O(m\sqrt{\mu(G)})$ berechnen

Beweis des Satzes von König

- Sei G = (A, B, E) und sei $W = (V_W, E_W)$ der Suchwald beim Abbruch der erfolglosen Suche nach einem M-Pfad durch den Algorithmus von Edmonds
- ullet Da G bipartit ist, gibt es keine ungeraden Kreise und somit keine Blüten
- ullet Daher hat jede Kante $e \in E$ entweder einen ungeraden Endpunkt oder sie ist in V_2 enthalten
- ullet Da jede Kante $e \in E$ einen Endpunkt in A hat, ist $C = V_1 \cup (V_2 \cap A)$ eine VC in G
- ullet Zudem ist |C| = |M|, da keine Matchingkante zwei Endpunkte in C hat
- Um C in Zeit $O(m\sqrt{\mu})$ zu erhalten, berechnen wir zuerst mit dem Algorithmus von Dinitz in Zeit $O(m\sqrt{\mu})$ ein maximales Matching M für G und starten danach die Prozedur FindePfad(G,M) zum Aufbau des Suchwalds W in Zeit O(n+m), aus dem sich C ablesen lässt